
213Folia Neuropathologica 2020; 58/3

Original paper

Overexpression of NLRC3 enhanced inhibition effect of sevoflurane 
on inflammation in an ischaemia reperfusion cell model

Wei Li1, Yu Zhang2, Zhenhua Hu3, Yanbing Xu1

1Department of Anaesthesia, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China, 
2Department of Geriatrics, Qilu Hospital of Shandong University, Shandong, China, 3Department of Anaesthesia, Shandong 

Chengwu People’s Hospital, Shandong, China 

Folia Neuropathol 2020; 58 (3): 213-222 DOI: https://doi.org/10.5114/fn.2020.100064 

A b s t r a c t

Brain ischaemia is one of the leading causes of mortality and disability worldwide, and the damage caused by 
ischaemia not only induces primary damage but also that induced by ischaemia-reperfusion (I/R) injury. Multiple 
processes including inflammation and oxidative stress response play important roles in the development of brain 
ischaemia injury. Sevoflurane is a well-known volatile anaesthetic, and a recent study discovered the role of sevo-
flurane in suppression of the inflammation response process via inhibition of inflammatory infiltrates and produc-
tion, maintaining the balance of cytokine responses, although the possible mechanism was not fully clear. NLRC3 
is a  member of the nucleotide-binding domain and leucine-rich repeat containing (NLR) family, and it has been 
regarded as a regulator of the inflammation process via the regulation of inflammasome formation, which is an 
initiator of inflammatory events. In the present study, we found that overexpression of NLRC3 reduced the apoptosis 
in a cellular model of ischaemia reperfusion, and the expression of pro-inflammatory cytokines was also decreased. 
Further study found that these effects might be mediated by the TRAF6/TLR4/NF-κB signalling pathway. Thus, we 
speculate that overexpression might enhance the effect of sevoflurane in inhibiting the inflammatory response pro-
cess in an ischaemia reperfusion model, which might be a new therapeutic strategy.
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Introduction

Cerebral ischaemia is one of the leading causes 
of death and disability around the world. Early res-
toration of blood flow is important for the treatment 
of cerebral ischaemia, but the apoptosis of neuro-
nal cells still occurs after the restoration of blood 
flow. These processes are thought to be mediated 
by activation of pro-inflammation factors including 
cytokines, nitric oxide, and free radicals [28]. How-

ever, the effective treatment for cerebral ischaemia is 
still lacking because multiple signalling pathways are 
only partially effective [41]. A recent study revealed 
that some anaesthetics possess a  neuroprotective 
role, including isoflurane, sevoflurane, and desflu-
rane. Among them, sevoflurane presented short-term 
(72 to 96 h) and long-term (28 days) neuroprotec-
tive effects in focal or global cerebral ischaemia [34]. 
A previous study found that sevoflurane could pre-
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vent the deficit in cognitive function induced by 
ischaemia when compared with a fentanyl treatment 
group [8]. However, the detailed mechanism was not 
clear. NOD-like receptor family CARD domain con-
taining 3 (NLRC3) is an important suppressor of the 
inflammatory response in multiple species [45], and 
a recent study noted that NLRC3 is also an important 
regulator of the inflammatory response in a model 
of ischaemia reperfusion, because overexpression of 
NLRC3 alleviated the inflammation process induced 
by ischaemia reperfusion [24]. Thus, we speculated 
that overexpression of NLRC3 might also contribute 
to the effects of sevoflurane in the treatment of cer-
ebral ischaemia. Herein, we established the an NLRC3 
overexpression and knockdown model in PC12 cells, 
and we found that overexpression of NLRC3 reduced 
the apoptosis process in PC12 cells, while further 
study found that these processes might be mediated 
by inhibition of the expression of pro-inflammato-
ry factors. Finally, we found that overexpression of 
NLRC3 promotes the survival of PC12 cells via regu-
lation of the TRAF6/TLR4/NF-κB signalling pathway 
and its downstream molecules. 

Material and methods

Cell culture and grouping

PC12 cells (CRL-1721) were purchased from ATCC. 
Cells were cultured under 37°C temperature with 5% 
CO2 in RPMI-1640 medium supplied with 10% fetal 
bovine serum (FBS). In order to construct an in vitro 
ischaemia reperfusion model in PC12 cells, cells were 
cultured in glucose-free Earl’s balanced salt solution 
with a 95% N2 and 5% CO2 atmosphere, and after 
4 h of incubation, the medium was replaced with  
RPMI-1640, and cells were cultured under normal 
conditions for 24 h [46]. Then, cells were divided into 
four groups: a model group (M), single sevoflurane 
treatment group (S), sevoflurane treatment com-
bined with NLRC3 overexpression group (O), and 
a sevoflurane treatment combined with NLRC3 inhi-
bition group (I). In the sevoflurane treatment group, 
cells were treated with 2.4% (v/v) sevoflurane for 
20 min at the end of ischaemia reperfusion model 
construction [14]. 

Vector construction

In order to construct the NLRC3 overexpression 
vector, cDNA of NLRC3 was acquired with the follow-
ing primers: Forward: 5’-CTGCAGCAATGACTCAAG-

GAT-3’, Reverse: 5’-CTGTGTGAAGTCGTGTTCCCT-3’. 
pcDNA3.1-HA and cDNA of NLRC3 were digested with 
BamHI (R0136S, NEB) and EcoRI (R0101S, NEB) at 37°C 
for 4 h, followed by incubation with T4 DNA ligase 
(M0202S, NEB) at 4°C overnight. Then, the vector was 
transfected into PC12 cells using Lipofectamine 3000 
transfection reagent (L3000075, Thermo), and stable 
expression cells were screened using 800 μg/ml G418 
(G8160, Solarbio). The NLRC3 knockdown vector was 
constructed according to a previous study [13]. Pairs 
of oligos were obtained using the following prim-
ers: Forward: 5’-CACCGTCAGACTTCTGTTGACCAAG-3’, 
Reverse: 5’-AACCTTGGTCAACAGAAGTCTGAC-3’, and 
oligos were incubated with T4 PNK (M0201S, NEB) 
at 37°C for 30 min and 95°C for 5 min. Vector and 
oligos were digested with BsmBI (R0580S, NEB) over-
night, and linked with Quick Ligase (M2200S, NEB) 
to construct the NLRC3 knockdown vector. Then the 
vector was transfected into 293T cells (CRL-11268) to 
construct the NLRC3 knockdown vector lentivirus, and 
stable expression cells were screened using 2 ng/ml 
puromycin (P8230, Solarbio). 

MTT assay

Cells were seeded into a 96-well plate at a concen-
tration of 1 × 105, then cells were grouped and treated 
as described above. The, cells were incubated with Cell 
Counting Kit-8 (CCK-8) reagent for 3 h. After incuba-
tion, the absorbance value at 450 nm was measured 
using a CMax Plus microplate reader. The viability rate 
was calculated with the following formula: 

Viability rate = (ODexperiment – ODblank)/(ODcontrol 
– ODblank). 

Flow cytometry

Apoptotic cells were detected using an annexin V/ 
PI apoptosis detection kit (CA1020, Solarbio). Briefly, 
cells were grouped and treated as described above, 
and then cells were diluted at 106/ml using bind-
ing buffer. Cells were incubated with annexin V for 
10  min followed by incubation with PI for 5 min. 
Apoptotic cells were detected using NovoCyte. 

RNA extraction

RNA extraction was performed as recommended 
by the manufacture’s protocol (R1200, Solarbio). Cells 
were firstly grouped and treated as described above 
and lysed with lysis buffer, followed by incubation 
at room temperature for 5 min and incubation with 
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chloroform for 5 min. The water phase was collected 
after centrifugation at 12,000 rpm for 10 min. After 
washing with washing buffer, RNA samples were 
eluted with elution buffer. The concentration of the 
RNA sample was detected using a  Nanodrop. RNA 
samples were stored at –80°C until the following 
experiment was performed. 

Reverse transcription and quantitative 
polymerase chain reaction 

Reverse transcription and quantitative polymer-
ase chain reaction (qPCR) were performed as rec-
ommended by the manufacture’s protocol (T2240, 
Solarbio). The reaction mixture was made up as rec-
ommended, and the reaction was performed with 
the following steps: reverse transcription: 50°C for 
15  min, denaturation: 95°C for 5 min, with the fol-
lowing steps repeated for 45 cycles: denaturation: 
95°C for 20 s, annealing: 57°C for 25 s. The qPCR 
experiment was performed with the following prim-
ers: IL-1β: Forward: 5’-AGAAGTACCTGAGCTCGCCA-3’, 
Reverse: 5’-CTGGAAGGAGCACTTCATCTGT-3’; IL-6: For-
ward: 5’-ACTCACCTCTTCAGAACGAATTG-3’, Reverse: 
5’-CCATCTTTGGAAGGTTCAGGTTG-3’; TNF-α: Forward: 
5’-GCTGCACTTTGGAGTGATCG-3’, Reverse: 5’-GAGGG- 
TTTGCTACAACATGGG-3’; IFN-γ: Forward: 5’-AGCTGAT-
TCAAATTCCGGTGG-3’, Reverse: 5’-TCTCCGGCCTCGA- 
AAGAGAT-3’. Glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) was used as an internal control, and 
data were analysed using the 2-DDCt method. 

Protein extraction and western blotting

Cells were firstly grouped and treated as described 
above. Then, cells were lysed with lysis buffer (RIPA 
supplied with protein inhibitor cocktail), and pro-
tein samples were collected after centrifugation at 
12,000 rpm for 10 min. 60 μg of protein sample was 
separated with 10% SDS-PAGE electrophoresis and 
then transferred onto a PVDF membrane. Membranes 
were firstly blocked with 5% skim milk, and then incu-
bated with primary antibodies at 4°C overnight and 
incubated with secondary antibody at room tempera-
ture for 4 h. The expression of each target protein was 
detected using a chemiluminescent immunoassay. 

Enzyme-linked immunosorbent assay 

Cells were firstly grouped and treated as described 
above, and then cultured medium was collected to 
perform the enzyme-linked immunosorbent assay 

(ELISA) assay. Briefly, samples and standards were 
added into a 96-well plate and incubated at room tem-
perature for 1 h. After washing with washing buffer, 
samples were incubated with TMB solution for 10 min 
away from light. The absorbance value at 450 nm was 
measured using a CMax Plus microplate reader. 

Statistical analysis

Data from each experiment were presented as 
mean ±SD. Each experiment was repeated for three 
times independently. The difference between groups 
was analysed using one-way ANOVA analysis, and 
p < 0.05 was set as a statistical difference.

Results

Effect of sevoflurane on proliferation 
and apoptosis of cells

The viability rate in the M, S, O, and I groups was 
100.0 ±6.3, 116.2 ±7.6, 141.1 ±9.8, and 104.5 ±6.7, 
respectively (Fig. 1A). The viability rate was significant-
ly increased in the S and O group compared with the 
M group (p < 0.05), and it was significantly increased 
in the O group compared with the S group (p < 0.05). 
The percentage of apoptotic cells in these groups was 
31.3 ±4.2, 24.1 ±3.5, 14.5 ±1.9, and 28.6 ±3.7, respec-
tively (Fig. 1B). The percentage of apoptotic cells was 
significantly decreased in the O group compared with 
the M and S groups (p < 0.05).

Expression of pro-inflammatory factors

The expression of interleukin 1β (IL-1β) in the 
M, S, O, and I groups was 1.21 ±0.13, 1.05 ±0.11, 0.72 
±0.07, and 1.37 ±0.15, respectively. The expression 
of IL-1β was significantly decreased in the O group 
compared with the M and S groups (p < 0.05) and 
was significantly increased in the I group compared 
with the S group (p < 0.05). The expression of inter-
leukin 6 (IL-6) in these groups was 1.34 ±0.17, 1.19 
±0.14, 0.85 ±0.09, and 1.38 ±0.16, respectively. The 
expression of IL-6 was significantly decreased in 
the O  group compared with the M and S  groups 
(p  <  0.05). The expression of tumour necrosis fac-
tor α (TNF-α) in these groups was 1.62 ±0.18, 1.35 
±0.15, 0.94 ±0.09, and 1.58 ±0.17, respectively. The 
expression of TNF-α was significantly decreased 
in the O group compared with the M and S groups 
(p < 0.05). The expression of interferon γ (IFN-γ) in 
these groups was 1.29 ±0.13, 1.10 ±0.10, 0.64 ±0.06, 
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and 1.42 ±0.15, respectively. The expression of IFN-γ 
was significantly decreased in the O group compared 
with the N group (p < 0.05), and it was significantly 
decreased in the O group and significantly increased 
in the I group compared with the S group (p < 0.05) 
(Fig. 2). 

Activation of the TRAF6/TLR4/NF-κB 
signalling pathway

The expression of TRAF6 in the M, S, O, and 
I groups was 0.64 ±0.05, 0.41 ±0.03, 0.17 ±0.01, and 
0.56 ±0.05, respectively. Expression of TRAF6 was 

Fig. 1. Effect of sevoflurane on proliferation of cells. A) Detection of cellular viability rate using MTT assay. 
B) Detection of apoptotic cells using flow cytometry. *p < 0.05 vs. M group; #p < 0.05 vs. S group. Data pre-
sented as mean ±SD. Each experiment was repeated three times independently.
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Fig. 2. Detection of A) interleukin 1β (IL-1β), B) interleukin 6 (IL-6), C) tumour necrosis factor α (TNF-α) and 
D) interferon γ (IFN-γ) mRNA expression. *p < 0.05 vs. M group; #p < 0.05 vs. S group. Data presented as mean 
±SD. Each experiment was repeated three times independently.
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significantly decreased in the S and O group com-
pared with the M group (p < 0.05), and the expres-
sion was significantly decreased in the O group and 
significantly increased in the I group compared with 
the S  group (p  <  0.05). The expression of TLR4 in 
these groups was 0.84 ±0.07, 0.74 ±0.06, 0.34 ±0.03, 
and 0.65 ±0.05, respectively. Expression of TLR4 was 
significantly decreased in the O and I groups com-
pared with the M group (p < 0.05), and it was signifi-
cantly decreased in the O group compared with the 
S group (p < 0.05). The expression of TIRAP in these 
groups was 1.54 ±0.13, 1.41 ±0.12, 0.47  ±0.04, and 
0.79 ±0.07, respectively. Expression of TIRAP was sig-
nificantly decreased in the O and I groups compared 
with the M and S groups (p < 0.05). The expression 
of MyD88 in these groups was 1.08 ±0.09, 1.10 ±0.09, 
0.57 ±0.05, and 0.99 ±0.08, respectively. Expression 
of MyD88 was significantly decreased in the O group 

compared with the M and S groups (p < 0.05). The 
ratio of p-NF-κB/NF-κB in these groups was 0.50 
±0.04, 1.10 ±0.09, 1.57 ±0.13, and 0.91 ±0.07, respec-
tively. The ratio of p-NF-κB/NF-κB was significantly 
increased in all treatment groups compared with the 
M group (p < 0.05), and it was significantly increased 
in the O  group and significantly decreased in the 
I group compared with the S group (p < 0.05) (Fig. 3). 

Expression of target molecules  
of the TRAF6/TLR4/NF-κB signalling 
pathway

The expression of PARP-1 in the M, S, O, and 
I groups was 1.17 ±0.10, 1.05 ±0.08, 0.75 ±0.06, and 
1.54 ±0.13, respectively. Expression of PARP-1 was sig-
nificantly decreased in the O group and significantly 
increased in the I  group (p  < 0.05) compared with 
the M and S groups. The expression of SIRT1 in these 
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Fig. 3. Expression of TRAF6/TLR4 signalling pathway. A) Western blotting analysis of TRAF6, TLR4, TIRAP, 
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vs. S group. Data presented as mean ±SD. Each experiment was repeated three times independently.
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groups was 0.38 ±0.03, 0.76 ±0.06, 1.04 ±0.09, and 
0.60 ±0.05, respectively. Expression of SIRT1 was sig-
nificantly increased in all treatment groups (p < 0.05) 
and was significantly increased in the O group and 
significantly decreased in the I group (p < 0.05) com-
pared with the S group. The expression of ROCK2 in 
these groups was 0.93 ±0.08, 0.84 ±0.07, 0.37 ±0.03, 
and 0.92 ±0.08, respectively. Expression of ROCK2 
was significantly decreased in the O group (p < 0.05) 
compared with the M and S groups. The expression 
of eNOS in these groups was 0.68 ±0.06, 0.90 ±0.08, 
1.29 ±0.10, and 0.84 ±0.07, respectively. Expression 
of eNOS was significantly increased in all treatment 
groups (p < 0.05) and was significantly increased in 
the O group (p < 0.05) compared with the S group 
(Fig. 4). 

Secretion of pro-inflammatory factors 
in culture medium

The concentration of IL-1β in the M, S, O, and 
I groups was 82.3 ±9.7, 67.5 ±6.8, 42.8 ±5.2, and 86.4 
±10.3 pg/ml, respectively. The concentration of IL-1β 
was significantly decreased in the O group compared 
with the M and S groups (p < 0.05). The concentration 
of IL-6 in these groups was 224.3 ±17.3, 184.6 ±15.4, 
135.7 ±12.6, and 213.7 ±16.8 pg/ml, respectively. The 
concentration of IL-6 was significantly decreased 

Fig. 4. Expression of PARP-1, SIRT1, ROCK2 and eNOS in each group. *p < 0.05 vs. M group; #p < 0.05 vs. 
S group. Data presented as mean ±SD. Each experiment was repeated three times independently.

in the S and O groups compared with the M group 
(p < 0.05), and it was significantly decreased in the 
O group compared with the S group (p < 0.05). The 
concentration of TNF-α in these groups was 382.1 
±27.6, 321.5 ±21.4, 248.6 ±16.9, and 379.8 ±26.5 pg/ml,  
respectively. The concentration of TNF-α was signifi-
cantly decreased in the S and O groups compared 
with the M group (p < 0.05), and it was significantly 
decreased in the O group and significantly increased 
in the I group compared with the S group (p < 0.05). 
The concentration of IFN-γ in these groups was 21.3 
±3.8, 17.0 ±2.9, 11.6 ±2.1, and 22.5 ±3.6 ng/ml, respec-
tively. The concentration of IFN-γ was significantly 
decreased in the O group compared with the M and 
S groups (p < 0.05) (Fig. 5). 

Discussion 

Acute ischaemic stroke, accounts for more than 
80% of stroke cases and is one of the major caus-
es of mortality and disability around the world [9]. 
Sevoflurane was firstly discovered to exert a  pro-
tective role in ischaemic myocardium in 2013 [47], 
and a recent study found that sevoflurane treatment 
enhanced the tolerance of cells to cerebral ischaemic 
damage, as well as a  reduction in neurologic defi-
cit scores, infarction volume, and oxidative stress 
levels  [23]. However, the detailed mechanism was 
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not fully understood. NLRC3 is the most commonly 
described members of the NLR family, and it has 
been proven to regulate the activation of the NF-κB 
signalling pathway via the degradation of IκBα [37]. 
A recent study found that NLRC3 plays an important 
role in regulating the innate immune response of 
the host [27]. Thus, we speculated that NLRC3 might 
contribute to the therapeutic effect of sevoflurane. 

The recovery of blood flow after cerebral ischae-
mic injury leads to the activation of inflammatory 
cascades, such as the infiltration of inflammatory 
cells and release of inflammatory mediators, fur-
ther leading to the death of neuron cells [38]. Here, 
we detected the expression of IL-1β, IL-6, IFN-γ, and 
TNF-α in each group of cells. 

Interleukin 1β is constitutively expressed in cen-
tral nervous system (CNS) and regulates the activity 
of neurotrophic factor and ion channels [42]. A previ-
ous study found that the expression of IL-1β was ele-
vated after ischaemic stroke and reached the peak 
at 12-24 h [7]. Using gene knockout mice, research-
ers found that IL-1β aggravates the pathology of 
ischaemia, while knockout of IL-1β would reduce the 
infarct volumes [5], and a further study noticed that 
administration of IL-1β before MCAO would worsen 
the outcome in rodents [31]. Interleukin 6 is also 
expressed in normal CNS and regulates homeosta-

sis via the classical signalling pathway. Significant 
elevation of IL-6 was also observed after ischae-
mic damage, and differing from IL-1β, IL-6 elevation 
occurred from 6 to 12 h after injury [11]. Another 
study found that the concentration of IL-6 in serum 
was increased in the first 24 h with increasing infarct 
size, and this process not only occurred in the acute 
phase but also at later time points [33]. The concen-
tration of TNF-α remains at a low level in CNS under 
normal conditions and regulates transmission and 
synaptic plasticity [39]. TNF-α is secreted by micro-
glia in the early phase after ischaemia and by mac-
rophages in the late phase [19], and after ischaemia 
the concentration of TNF-α is significantly elevated 
at 12-24 h and remains at a high level for days [20]. 
Interferon γ is another regulator of the inflamma-
tory response process in the CNS; however, the role 
of IFN-γ in cerebral disease such as ischaemia and 
trauma is not clear. A previous study found that 
there is no relevant correlation with IFN-γ and focal 
ischaemia in mice [21], arguing against IFN-γ as the 
key regulator of injury after focal ischaemia. T cells 
were considered the main effector of the antigen-
independent innate inflammatory response after 
the acute phase of ischaemic inflammation, which 
is mainly regulated by IFN-γ. Interferon γ is regarded 
as a neurotoxic factor because IFN-γ directly induces 
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Fig. 5. Detection of A) interleukin 1β (IL-1β), B) interleukin 6 (IL-6), C) tumour necrosis factor α (TNF-α) and 
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mean ±SD. Each experiment was repeated three times independently.
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NF-κB is the central regulator of the inflamma-
tory response, which is regulated by multiple signal-
ling pathways. Besides TLR4/TRAF6, poly(adenosine 
diphosphateribose) polymerase-1 (PARP-1)/sirtuin 1 
(SIRT1) is another possible pathway involved in the 
regulation of NF-κB activity [40]. It is well-known that 
activity of PARP leads to the reduction of the intrac-
ellular concentration of NAD+ [1], which is correlated 
with the reduction of SIRT1 activity because SIRT1 is 
a NAD+-dependent protein deacetylase [12]. Further 
study found that inflammation-related diseases 
commonly occurred due to the overexpression of 
PARP-1 [29], and oxidative stress status induced by 
the inflammatory response leads to the activation 
of PARP, resulting in the strain of NAD+ and further 
inhibition of SIRT1 activity. Reduction of SIRT1 activ-
ity further induces the dysfunction of mitochondria, 
a  possible leading cause of chronic inflammatory 
and metabolic diseases [30]. Rho-associated protein 
kinase (ROCK) is a downstream target of Rho GTPas-
es, a kind of serine-threonine protein kinase, and is 
divided into two subtypes: ROCK1 and ROCK2 [18]. 
ROCK is ubiquitously expressed and performs an 
important role in neurological diseases including 
cerebral injury  [15]. A  previous study found that 
ROCK2 is activated after ischaemia in a  rat model 
of cerebral ischaemia, and another study found 
that myosin-binding subunit, a substrate of ROCK2, 
is elevated in cerebral ischaemia rats and reaches 
a peak at six weeks, presenting a similar trend to 
changes in ROCK2 expression  [44]. Activation of 
ROCK2 leads to the degradation of many down-
stream effectors of the PI3K/AKT signalling pathway, 
including NF-κB [4]. More evidence has shown that 
endothelial nitric oxide synthase (eNOS), an impor-
tant regulator of endothelial function, is regulated 
by the RhoA/ROCK pathway [43]. Inhibition of RhoA 
geranylgeranylation would decrease the activation 
of RhoA, leading to the reduction of ROCK activity 
and the upregulation of eNOS [22]. Additionally, 
direct inhibition of ROCK using ROCK inhibitor also 
increases the expression of eNOS [35]; because 
eNOS is a protector of the vasculature, these find-
ings show that ROCK might be a protector of cer-
ebral ischaemia. Based on these findings, we specu-
lated that overexpression of NRLC3 might enhance 
the therapeutic effect of sevoflurane on ischaemia 
reperfusion through inhibition of the inflammatory 
response process via inhibition of the TRAF6/TLR4 
signalling pathway. 

neuronal cell death [25]. Additionally, another study 
found that regulatory T cells might present a neuro-
protective effect via suppression of the neurotoxic 
function of IFN-γ through expression of IL-10 [25]. 
Here, we found that the expression of these factors 
was decreased after application of NLRC3 overex-
pression, indicating a protective role in an ischaemia 
model.

Many studies have shown that ischaemia-reper-
fusion injury induced multiple pathological altera-
tions, including metabolism abnormality, inflamma-
tory reaction, and oxidative stress leading to the 
regeneration of neuron cells [48]. A previous study 
proved that the TLR signalling pathway plays an 
important role in the development of ischaemia-
reperfusion injury, which is activated by DNA dam-
age and protein degradation [2]. NF-κB could be 
activated by TRAF6 to regulate the inflammatory 
response process via the MyD88-dependent or -inde-
pendent pathway. In an MCAO model, researchers 
noticed that brain oedema and TRAF6 expression 
were obviously observed, and after the application 
of TRAF6 inhibitor, the infarction size and the degree 
of oedema were reduced, as well as the expression 
of TRAF6 [26]. Further study found that the effect of 
TRAF6 in ischaemia-reperfusion injury was mainly 
mediated by the TLR4 signalling pathway [49]. Addi-
tionally, TRAF6 is the only member of the TRAF fam-
ily that can regulate the TNF-α and IL-1β signalling 
pathway [16], and thus the expression of TRAF6 is 
closely related to the regulation of the cellular apop-
tosis process after ischaemia-reperfusion injury [32], 
and the reduction of TRAF6 expression leads to the 
inactivation of NF-κB signalling pathway as well as 
the reduction of cytokine production [10]. In order to 
activate downstream pathways, TLRs need to bind 
with a variety of adaptor proteins, including TIR-con-
taining adaptor protein (TIRAP) and MyD88. Under 
oxidative stress, TRIAP binds with PIP2, leading to the 
activation of MyD88 and its downstream molecular, 
NF-κB [36]. A  recent study proved that TIRAP could 
facilitate the interaction of TLR4 and MyD88, indicat-
ing that TRIAP is critical for the formation of endo-
somal compartments [6]. Another researcher found 
that atorvastatin inhibits the inflammatory response 
process due to its ability to inactivate caspase-1 
and further inhibit the secretion of IL-1β, and these 
effects might be mediated by the TLR4/MyD88/NF-ĸB 
pathway [17], indicating that MyD88 is an important 
adaptor of the TLR4 signalling pathway [3]. 
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